1.创建一个hadoop项目(导入hadoop相关包,hbase-0.90.5.jar,zookeeper-3.3.2.jar)
2.创建测试数据(2.txt 上传至hdfs://127.0.0.1:9000/tmp/2.txt)
1150,content,email,xx@gmail.com 1152,content,email,xx@cc.com
3.创建Hbase表(input_tb)
hbase shell>create 'input_tb','content' ---input_tb为表名 content为存储单位--族名
4.导入数据代码
SampleUploader.java
/** * Copyright 2009 The Apache Software Foundation * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.util.GenericOptionsParser;
/** * Sample Uploader MapReduce * <p> * This is EXAMPLE code. You will need to change it to work for your context. * <p> * Uses TableReducer} to put the data into HBase. Change the InputFormat * to suit your data. In this example, we are importing a CSV file. * <p> * <pre>row,family,qualifier,value</pre> * <p> * The table and columnfamily we're to insert into must preexist. * <p> * There is no reducer in this example as it is not necessary and adds * significant overhead. If you need to do any massaging of data before * inserting into HBase, you can do this in the map as well. * <p>Do the following to start the MR job: * <pre> * ./bin/hadoop org.apache.hadoop.hbase.mapreduce.SampleUploader /tmp/input.csv TABLE_NAME * </pre> * <p> * This code was written against HBase 0.21 trunk. */ public class SampleUploader {
private static final String NAME = "SampleUploader"; static class Uploader extends Mapper<LongWritable, Text, ImmutableBytesWritable, Put> {
private long checkpoint = 100; private long count = 0; @Override public void map(LongWritable key, Text line, Context context) throws IOException { // Input is a CSV file // Each map() is a single line, where the key is the line number // Each line is comma-delimited; row,family,qualifier,value // Split CSV line java.util.Random r=new java.util.Random(); String [] values = line.toString().split(","); System.out.println(r.nextInt()); System.out.println(line.toString());
if(values.length != 4) { return; } // Extract each value byte [] row = Bytes.toBytes(values[0]); byte [] family = Bytes.toBytes(values[1]); byte [] qualifier = Bytes.toBytes(values[2]); byte [] value = Bytes.toBytes(values[3]); // Create Put Put put = new Put(row); put.add(family, qualifier, value); // Uncomment below to disable WAL. This will improve performance but means // you will experience data loss in the case of a RegionServer crash. // put.setWriteToWAL(false); try { context.write(new ImmutableBytesWritable(row), put); } catch (InterruptedException e) { e.printStackTrace(); } // Set status every checkpoint lines if(++count % checkpoint == 0) { context.setStatus("Emitting Put " + count); } } } /** * Job configuration. */ public static Job configureJob(Configuration conf, String [] args) throws IOException { Path inputPath = new Path(args[0]); String tableName = args[1]; Job job = new Job(conf, NAME + "_" + tableName); job.setJarByClass(Uploader.class); FileInputFormat.setInputPaths(job, inputPath); job.setInputFormatClass(TextInputFormat.class); job.setMapperClass(Uploader.class); // No reducers. Just write straight to table. Call initTableReducerJob // because it sets up the TableOutputFormat. TableMapReduceUtil.initTableReducerJob(tableName, null, job); job.setNumReduceTasks(0); return job; }
/** * Main entry point. * * @param args The command line parameters. * @throws Exception When running the job fails. */ public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if(otherArgs.length != 2) { System.err.println("Wrong number of arguments: " + otherArgs.length); System.err.println("Usage: " + NAME + " <input> <tablename>"); System.exit(-1); } Job job = configureJob(conf, otherArgs); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
5.hbase shell >scan 'input_tb'
即可看到所有导入的记录(2.txt)